首页> 外文期刊>Concurrency, practice and experience >A forecasting tool for prediction of epileptic seizures using a machine learning approach
【24h】

A forecasting tool for prediction of epileptic seizures using a machine learning approach

机译:使用机器学习方法预测癫痫发作的预测工具

获取原文
获取原文并翻译 | 示例

摘要

ECG and EEG signals are very helpful in the early diagnosis of epileptic seizures. The research focuses on analysis of ECG and EEG signals applying a deep learning technique to study early prediction of epileptic seizure. Signal processing methods like Empirical Mode Decomposition, spectral analysis, and statistical methods were used. The algorithms were implemented in MATLAB, and the EEG and ECG data were collected from Physiobank and EPILEPSIAE databases. In the window-based analysis of low-frequency spectral area of EEG signals, 78.5% of the cases displayed a significant change as the windows progressed and the onset of seizure was approached. The spectral area of IMF components indicated a possible seizure prediction in 68.9% of the analyzed cases. Considering signals from individual EEG electrodes, the least percentage of seizure prediction was indicated by signals from T4 and F4 electrodes (52.3% and 40.7%, respectively, for spectral peaks and 23.8% and 29.6%, respectively, for spectral area). The results of regression analysis show that prediction of seizures can be possible around 20-30 minutes prior to the actual occurrence of seizures.
机译:ECG和EEG信号对于癫痫发作的早期诊断非常有帮助。该研究专注于使用深度学习技术对癫痫发作的早期预测进行研究,以分析ECG和EEG信号。使用了诸如经验模式分解,频谱分析和统计方法之类的信号处理方法。该算法在MATLAB中实现,并且从Physiobank和EPILEPSIAE数据库中收集了EEG和ECG数据。在基于窗口的脑电信号低频频谱区域分析中,随着窗口的进展和癫痫发作的开始,有78.5%的病例显示出显着变化。 IMF成分的光谱区域表明,在68.9%的分析病例中可能有癫痫发作预测。考虑到来自单个EEG电极的信号,癫痫发作预测的最小百分比由来自T4和F4电极的信号指示(光谱峰分别为52.3%和40.7%,光谱面积分别为23.8%和29.6%)。回归分析的结果表明,可以在实际发作之前约20-30分钟预测癫痫发作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号