首页> 外文期刊>Concurrency and computation: practice and experience >Building a scientific workflow framework to enable real-time machine learning and visualization
【24h】

Building a scientific workflow framework to enable real-time machine learning and visualization

机译:建立科学的工作流程框架以实现实时机器学习和可视化

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, we have entered the era of big data. In the area of high performance computing,large-scale simulations can generate huge amounts of data with potentially critical information.However, these data are usually saved in intermediate files and are not instantly visible untiladvanced data analytics techniques are applied after reading all simulation data from persistentstorages (eg, local disks or a parallel file system). This approach puts users in a situation wherethey spend long time on waiting for running simulations while not knowing the status of the runningjob. In this paper, we build a new computational framework to couple scientific simulationswith multi-step machine learning processes and in-situ data visualizations.We also design a newscalable simulation-time clustering algorithm to automatically detect fluid flow anomalies. Thiscomputational framework is built upon different software components and provides plug-in dataanalysis and visualization functions over complex scientific workflows.With this advanced framework,users can monitor and get real-time notifications of special patterns or anomalies fromongoing extreme-scale turbulent flow simulations.
机译:如今,我们已经进入了大数据时代。在高性能计算领域, r n大型仿真可以生成包含潜在关键信息的大量数据。 r n但是,这些数据通常保存在中间文件中,直到高级数据才立即可见从持久性 r n存储中(例如,本地磁盘或并行文件系统)读取所有模拟数据后,将应用分析技术。这种方法使用户处于 r n花很长时间等待运行模拟而又不知道运行状态的情况。本文中,我们建立了一个新的计算框架,以将科学模拟 r n与多步机器学习过程和现场数据可视化相结合,还设计了一种新的 r n可扩展的模拟时间聚类算法来自动检测流体流动异常。该计算框架基于不同的软件组件,可在复杂的科学工作流程中提供插件数据分析和可视化功能。借助此高级框架,用户可以监视并实时获取特殊模式的通知或来自正在进行的极端尺度湍流模拟的异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号