首页> 外文期刊>Concurrency and Computation >Parallel RNA secondary structure prediction using stochastic context-free grammars
【24h】

Parallel RNA secondary structure prediction using stochastic context-free grammars

机译:使用随机上下文无关文法的并行RNA二级结构预测

获取原文
获取原文并翻译 | 示例

摘要

With the growing number of known RNA genes efficient and accurate computational analysis of RNA sequences is becoming increasingly important. Stochastic context-free grammars (SCFGs) are used as a popular tool to model RNA secondary structures. However, algorithms for aligning a RNA sequence to a SCFG are highly compute-intensive. This has so far limited applications of SCFGs to relatively small problem sizes. In this paper we present the design of a parallel RNA sequence-structure alignment algorithm. Its implementation on parallel systems leads to significant runtime savings. This makes it possible to compute sequence-structure alignments of even the largest RNAs such as small subunit ribosomal rRNAs and long subunit ribosomal rRNAs in reasonable time.
机译:随着已知RNA基因数量的增长,对RNA序列进行高效,准确的计算分析变得越来越重要。随机上下文无关文法(SCFG)被用作建模RNA二级结构的流行工具。然而,用于将RNA序列与SCFG比对的算法是高度计算密集的。迄今为止,这已将SCFG的应用限制为相对较小的问题大小。在本文中,我们提出了一种平行RNA序列-结构比对算法的设计。它在并行系统上的实现可显着节省运行时间。这样就可以在合理的时间内计算出最大的RNA,例如小亚基核糖体rRNA和长亚基核糖体rRNA的序列结构比对。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号