首页> 外文期刊>Concurrency and Computation >Discovery of textual knowledge flow based on the management of knowledge maps
【24h】

Discovery of textual knowledge flow based on the management of knowledge maps

机译:基于知识图谱管理的文本知识流发现

获取原文
获取原文并翻译 | 示例

摘要

Textual knowledge flow (TKF) provides an effective technique and theoretical support for the discovery and cooperation of knowledge innovation, intelligent browsing, and personalized recommendation in Web services and e-Science Knowledge Grid. For the discovery of TKF, firstly knowledge map (KM) is proposed to represent the textual knowledge; then a hash algorithm is used to code KMs in order to form an Island which contains enormous KMs belonging to a domain. Under the control of the Island, C-Location and R-Location are introduced to manage those KMs belonging to an Island. KM-Chord is proposed to manage the number of Islands, C-Locations and R-Locations in Web or a library. With the help of the management of KMs, similar relation and associated relation between KMs are found to build the semantic link network (SLN) between KMs. Based on the SLN and users' profile and input, similar or associated TKF with the user's different demands is activated. Experiments show that the proposed method can effectively discover TKF for Web services and e-Science Knowledge Grid.
机译:文本知识流(TKF)为Web服务和e-Science知识网格中知识创新,智能浏览和个性化推荐的发现与合作提供了有效的技术和理论支持。为了发现传统知识,首先提出知识图谱(KM)来表示文本知识。然后使用散列算法对KM进行编码,以形成一个岛,其中包含属于一个域的大量KM。在孤岛的控制下,引入了C-Location和R-Location,以管理属于某个孤岛的KM。建议使用KM-Chord来管理Web或库中的孤岛,C位置和R位置的数量。借助KM的管理,发现KM之间的相似关系和关联关系可以在KM之间建立语义链接网络(SLN)。根据SLN和用户的个人资料和输入,将激活具有用户不同需求的相似或关联的TKF。实验表明,该方法可以有效地发现针对Web服务和e-Science知识网格的TKF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号