首页> 外文期刊>Concurrency and Computation >Resource Selection In Grid: A Taxonomy And A New System Based On Decision Theory, Case-basedreasoning, And Fine-grain Policies
【24h】

Resource Selection In Grid: A Taxonomy And A New System Based On Decision Theory, Case-basedreasoning, And Fine-grain Policies

机译:网格中的资源选择:基于决策理论,案例推理和细粒度策略的分类法和新系统

获取原文
获取原文并翻译 | 示例

摘要

Resource selection on current brokers still presents challenges for achieving the best solution in the decision-making process, especially when considering many factors. We approach this problem considering user preference for specific resource selection objectives such as expected performance for an application execution, resource access restriction, execution application cost, and resource reliability. For each objective, we employ different techniques and combine them in a decision theory model. By considering performance in the selection process, we use the case-based reasoning technique based on similar past job executions to predict a new job time execution. With the resource access restriction as a selection factor, we develop a fine-grain policy-based model for distributed resource access verification. Unlike a global access policy, which applies to all resources in a virtual organization, a fine-grain policy establishes rules for specific resources and users. In this case, a previous access restriction verification prevents a resource selection, which may deny access to a requisition, resulting in an unsuccessful submission. The decision model uses the multi-attribute utility theory, which relates the important objectives above and allows different proportions of user preferences for each objective. The complete solution is distributed and implemented using a multi-agent system, acting as a resource broker. All models of this paper are analyzed in a real environment, presenting appropriate functional behaviors. Results show that our prediction model is accurate and efficient in the prediction process and our distributed model runs faster than centralized approaches and considers access restriction heterogeneities.
机译:当前经纪人的资源选择仍然面临着在决策过程中实现最佳解决方案的挑战,尤其是考虑到许多因素时。考虑到用户对特定资源选择目标的偏爱,例如针对应用程序执行的预期性能,资源访问限制,执行应用程序成本和资源可靠性,我们考虑了此问题。对于每个目标,我们采用不同的技术并将其组合到决策理论模型中。通过考虑选择过程中的表现,我们使用基于案例的推理技术,该技术基于类似过去的作业执行情况,以预测新的作业时间执行情况。以资源访问限制为选择因素,我们为分布式资源访问验证开发了基于细粒度策略的模型。与适用于虚拟组织中所有资源的全局访问策略不同,细粒度策略为特定资源和用户建立规则。在这种情况下,先前的访问限制验证会阻止资源选择,这可能会拒绝对请购单的访问,从而导致提交失败。决策模型使用多属性效用理论,该理论与上述重要目标相关联,并允许每个目标使用不同比例的用户偏好。完整的解决方案使用充当资源代理的多代理系统进行分发和实现。本文的所有模型都在真实环境中进行了分析,并提出了适当的功能行为。结果表明,我们的预测模型在预测过程中是准确而高效的,而分布式模型的运行速度比集中式方法快,并且考虑了访问限制异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号