首页> 外文期刊>Concurrency and Computation >Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis
【24h】

Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis

机译:并行异构CBIR系统,利用光谱混合分析实现高效的高光谱图像检索

获取原文
获取原文并翻译 | 示例

摘要

The purpose of content-based image retrieval (CBIR) is to retrieve, from real data stored in a database, information that is relevant to a query. In remote sensing applications, the wealth of spectral information provided by latest-generation (hyperspectral) instruments has quickly introduced the need for parallel CBIR systems able to effectively retrieve features of interest from ever-growing data archives. To address this need, this paper develops a new parallel CBIR system that has been specifically designed to be run on heterogeneous networks of computers (HNOCs). These platforms have soon become a standard computing architecture in remote sensing missions due to the distributed nature of data repositories. The proposed heterogeneous system first extracts an image feature vector able to characterize image content with sub-pixel precision using spectral mixture analysis concepts, and then uses the obtained feature as a search reference. The system is validated using a complex hyperspectral image database, and implemented on several networks of workstations and a Beowulf cluster at NASA's Goddard Space Flight Center. Our experimental results indicate that the proposed parallel system can efficiently retrieve hyperspectral images from complex image databases by efficiently adapting to the underlying parallel platform on which it is run, regardless of the heterogeneity in the compute nodes and communication links that form such parallel platform.
机译:基于内容的图像检索(CBIR)的目的是从数据库中存储的真实数据中检索与查询相关的信息。在遥感应用中,最新一代(高光谱)仪器提供的大量光谱信息迅速引入了对并行CBIR系统的需求,该系统能够从不断增长的数据档案中有效地检索感兴趣的特征。为了满足这一需求,本文开发了一种新的并行CBIR系统,该系统专门设计用于在异构计算机(HNOC)网络上运行。由于数据存储库的分布式性质,这些平台很快已成为遥感任务中的标准计算架构。所提出的异构系统首先使用光谱混合分析概念提取能够以亚像素精度表征图像内容的图像特征向量,然后将获得的特征用作搜索参考。该系统使用复杂的高光谱图像数据库进行了验证,并在NASA戈达德太空飞行中心的几个工作站网络和Beowulf集群上实现。我们的实验结果表明,所提出的并行系统可以通过有效地适应运行其的基础并行平台,而从复杂的图像数据库中高效检索高光谱图像,而无需考虑构成该并行平台的计算节点和通信链路的异构性。

著录项

  • 来源
    《Concurrency and Computation》 |2010年第9期|p.1138-1159|共22页
  • 作者单位

    Department of Technology of Computers and Communication, University of Extremadura, Avda. De la Universidad s, E-10071 Caceres, Spain;

    rnDepartment of Technology of Computers and Communication, University of Extremadura, Avda. De la Universidad s, E-10071 Caceres, Spain;

    rnDepartment of Technology of Computers and Communication, University of Extremadura, Avda. De la Universidad s, E-10071 Caceres, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heterogeneous parallel computing; image processing; hyperspectral imaging;

    机译:异构并行计算;图像处理;高光谱成像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号