首页> 外文期刊>Concurrency and computation: practice and experience >A scalable framework for continuous query evaluations over multidimensional, scientific datasets
【24h】

A scalable framework for continuous query evaluations over multidimensional, scientific datasets

机译:用于多维科学数据集上连续查询评估的可扩展框架

获取原文
获取原文并翻译 | 示例

摘要

Efficient access to voluminous multidimensional datasets is essential for scientific applications. Fast evolving datasets present unique challenges during retrievals. Keeping data up-to-date can be expensive and may involve the following: repeated data queries, excessive data movements, and redundant data preprocessing. This paper focuses on the issue of efficient manipulation of query results in cases where the dataset is continuously evolving. Our approach provides an automated and scalable tracking and caching mechanism to evaluate continuous queries over data stored in a distributed storage system. We have designed and developed a distributed updatable cache that ensures the query output to contain the most recent data arrivals. We have developed a dormant cache framework to address strains on caching capacity due to intensive memory requirements. The data to be stored in the dormant cache are selected using the cached continuous query scheduling algorithm that we have designed and developed. This approach is evaluated in the context of Galileo, our distributed data storage framework. This paper includes an empirical evaluation performed on Amazon Web Services' cluster and a private cluster. Our performance benchmarks demonstrate the efficacy of our approach. Copyright © 2015 John Wiley & Sons, Ltd.
机译:有效访问大量多维数据集对于科学应用而言至关重要。快速发展的数据集在检索过程中提出了独特的挑战。保持数据最新可能很昂贵,并且可能涉及以下方面:重复的数据查询,过多的数据移动以及冗余的数据预处理。本文着重于在数据集不断发展的情况下有效处理查询结果的问题。我们的方法提供了一种自动化且可扩展的跟踪和缓存机制,以评估对分布式存储系统中存储的数据的连续查询。我们已经设计和开发了分布式可更新缓存,以确保查询输出包含最新的数据到达。我们已经开发了一个休眠缓存框架,以解决由于内存需求量大而导致缓存容量紧张的问题。使用我们设计和开发的缓存连续查询调度算法选择要存储在休眠缓存中的数据。这种方法是在我们的分布式数据存储框架Galileo的上下文中进行评估的。本文包括对Amazon Web Services的集群和私有集群执行的经验评估。我们的性能基准证明了我们方法的有效性。版权所有©2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号