首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >A General Framework for Efficient Continuous Multidimensional Top-k Query Processing in Sensor Networks
【24h】

A General Framework for Efficient Continuous Multidimensional Top-k Query Processing in Sensor Networks

机译:传感器网络中高效连续多维Top-k查询处理的通用框架

获取原文
获取原文并翻译 | 示例

摘要

Top-k query has long been a crucial problem in multiple fields of computer science, such as data processing and information retrieval. In emerging cyber-physical systems, where there can be a large number of users searching information directly into the physical world, many new challenges arise for top-k query processing. From the client's perspective, users may request different sets of information, with different priorities and at different times. Thus, top-k search should not only be multidimensional, but also be across time domain. From the system's perspective, data collection is usually carried out by small sensing devices. Unlike the data centers used for searching in the cyber-space, these devices are often extremely resource constrained and system efficiency is of paramount importance. In this paper, we develop a framework that can effectively satisfy demands from the two aspects. The sensor network maintains an efficient dominant graph data structure for data readings. A simple top-k extraction algorithm is used for user query processing and two schemes are proposed to further reduce communication cost. Our methods can be used for top-k query with any linear convex query function. The framework is adaptive enough to incorporate some advanced features; for example, we show how approximate queries and data aging can be applied. To the best of our knowledge, this is the first work for continuous multidimensional top-k query processing in sensor networks. Simulation results show that our schemes can reduce the total communication cost by up to 90 percent, compared with a centralized scheme or a straightforward extension from previous top-k algorithm on 1D sensor data.
机译:长期以来,Top-k查询一直是计算机科学多个领域中的关键问题,例如数据处理和信息检索。在新兴的网络物理系统中,可能有大量的用户直接在物理世界中搜索信息,对于top-k查询处理出现了许多新的挑战。从客户的角度来看,用户可以在不同的时间,不同的优先级请求不同的信息集。因此,top-k搜索不仅应是多维的,而且还应跨时域。从系统的角度来看,数据收集通常由小型传感设备进行。与用于网络空间搜索的数据中心不同,这些设备通常受到资源的严重限制,系统效率至关重要。在本文中,我们开发了一个可以从两个方面有效满足需求的框架。传感器网络为数据读取保持有效的优势图数据结构。一种简单的top-k提取算法用于用户查询处理,并提出了两种方案以进一步降低通信成本。我们的方法可用于具有任何线性凸查询功能的top-k查询。该框架具有足够的适应性,可以合并一些高级功能。例如,我们展示了如何应用近似查询和数据老化。据我们所知,这是传感器网络中连续多维top-k查询处理的第一项工作。仿真结果表明,与集中式方案或对一维传感器数据的先前top-k算法的直接扩展相比,我们的方案可以将总通信成本降低90%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号