首页> 外文期刊>Concurrency and computation: practice and experience >Palirria: accurate on-line parallelism estimation for adaptive work-stealing
【24h】

Palirria: accurate on-line parallelism estimation for adaptive work-stealing

机译:Palirria:用于自适应工作窃取的准确在线并行度估计

获取原文
获取原文并翻译 | 示例

摘要

We present Palirria, a self-adapting work-stealing scheduling method for nested fork/join parallelism that can be used to estimate the number of utilizable workers and self-adapt accordingly. The estimation mechanism is optimized for accuracy, minimizing the requested resources without degrading performance. We implemented Palirria for both the Linux and Barrelfish operating systems and evaluated it on two platforms: a 48-core Non-Uniform Memory Access (NUMA) multiprocessor and a simulated 32-core system. Compared with state-of-the-art, we observed higher accuracy in estimating resource requirements. This leads to improved resource utilization and performance on par or better to executing with fixed resource allotments. Copyright © 2015 John Wiley & Sons, Ltd.
机译:我们提出Palirria,这是一种用于嵌套的fork / join并行性的自适应工作窃取调度方法,可用于估计可利用的工人数并进行相应的自适应。估算机制针对精度进行了优化,从而在不降低性能的情况下将请求的资源最小化。我们为Linux和Barrelfish操作系统实现了Palirria,并在两个平台上对其进行了评估:一个48核非均匀内存访问(NUMA)多处理器和一个模拟的32核系统。与最新技术相比,我们在估算资源需求方面观察到了更高的准确性。这样可以提高资源利用率和性能,甚至可以更好地执行固定资源分配。版权所有©2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号