首页> 外文期刊>ACM transactions on computer systems >Adaptive Work-stealing With Parallelism feedback
【24h】

Adaptive Work-stealing With Parallelism feedback

机译:具有并行反馈的自适应工作窃取

获取原文
获取原文并翻译 | 示例

摘要

Multiprocessor scheduling in a shared multiprogramming environment can be structured as two-level scheduling, where a kernel-level job scheduler allots processors to jobs and a user-level thread scheduler schedules the work of a job on its allotted processors. We present a randomized work-stealing thread scheduler for fork-join multithreaded jobs that provides continual parallelism feedback to the job scheduler in the form of requests for processors. Our A-Steal algorithm is appropriate for large parallel servers where many jobs share a common multiprocessor resource and in which the number of processors available to a particular job may vary during the job's execution. Assuming that the job scheduler never allots a job more processors than requested by the job's thread scheduler, A-Steal guarantees that the job completes in near-optimal time while utilizing at least a constant fraction of the allotted processors.
机译:共享的多编程环境中的多处理器调度可以构造为两级调度,其中内核级作业调度程序将处理器分配给作业,而用户级线程调度程序则在其分配的处理器上调度作业的工作。我们提供了一个用于fork-join多线程作业的随机工作窃取线程调度程序,它以对处理器的请求的形式向作业调度程序提供持续的并行性反馈。我们的A-Steal算法适用于大型并行服务器,其中许多作业共享一个公共的多处理器资源,并且在特定的作业执行期间,特定作业可用的处理器数量可能会有所不同。假定作业调度程序分配给作业的处理器数量永远不会超过作业线程调度程序所请求的处理器数量,A-Steal保证作业将在接近最优的时间内完成,同时至少利用恒定比例的分配处理器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号