首页> 外文期刊>Concurrency and Computation >Balanced task allocation in the on-demand computing-basedrntransaction processing system using social spider optimization
【24h】

Balanced task allocation in the on-demand computing-basedrntransaction processing system using social spider optimization

机译:使用社交蜘蛛优化的按需计算的事务处理系统中的平衡任务分配

获取原文
获取原文并翻译 | 示例

摘要

Balanced task allocation is one of the methods that can be used to maximize the performance andrnreliability in the on-demand computing-based transaction processing system. On-demand computingrnis an increasingly popular enterprise model. It provides computing resources to the userrnas needed, which may be maintained within the user's enterprise, or made available by a servicernprovider. The balanced task allocation in such environment is known to be an NP hard. Thernreliability is a measure of trustworthiness of the system while executing the task. So we derivernthe reliability formula for the on-demand computing-based transaction processing system consideringrnresource availability. We propose the balanced task allocation based on social spiderrnoptimization (LBTA_SSO) method for this problem. The LBTA_SSO is based on the cooperativernbehavior of social-spiders to find a collectionof task allocation solutions.Wemodified five existingrnalgorithms to obtain the task allocation algorithms; Honey Bee Optimization (HBO), Ant ColonyrnOptimization (ACO), Hierarchical Load Balanced Algorithm (HLBA), Dynamic and DecentralizedrnLoad Balancing (DLB), and Randomized Algorithm respectively. Then,we compared the proposedrnalgorithmwith these modified algorithms. The results show that our algorithmworks better thanrnthemodified existing algorithms.
机译:平衡任务分配是可用于在基于按需计算的事务处理系统中最大化性能和可靠性的方法之一。按需计算是日益流行的企业模型。它向所需的用户提供计算资源,这些资源可以维护在用户的企业内部,也可以由服务提供商提供。在这种环境中,平衡的任务分配被认为是NP难题。可靠性是执行任务时系统的可信度的一种度量。因此,我们在考虑资源可用性的基础上,推导了基于按需计算的交易处理系统的可靠性公式。针对此问题,我们提出了基于社会蜘蛛优化(LBTA_SSO)方法的平衡任务分配。 LBTA_SSO基于社交蜘蛛的协作行为来找到任务分配解决方案的集合。我们修改了五个现有算法,以获取任务分配算法。蜜蜂优化(HBO),蚁群优化(ACO),分层负载均衡算法(HLBA),动态和分散负载均衡(DLB)和随机算法。然后,我们将这些算法与改进算法进行了比较。结果表明,我们的算法比改进的现有算法更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号