首页> 外文期刊>Concurrency and computation: practice and experience >FRFB: Top-k Followee Recommendation by exploring the Following Behaviors in social networks
【24h】

FRFB: Top-k Followee Recommendation by exploring the Following Behaviors in social networks

机译:FRFB:通过探索社交网络中的以下行为来推荐Top-k追随者

获取原文
获取原文并翻译 | 示例

摘要

As social networks such asmicro-blogging sites rapidly grow, deciding whom to follow (followeernrecommendation) becomes a significantly important problem. Most existing works exclusivelyrnrely on two traditional factors: the proximity between two users in the network topology orrnthe similarity of the user-generated contents in the social network, disregarding the effect ofrnusers' following behaviors. The challenge ofhowto effectively combine these two factors remainsrnlargely open.Moreover,most research studies simply sort the scores to find top-k users, which isrntime-consuming, especially for large-scale networks. In this paper, we propose the idea that “predictrnusers' following behaviors by following behaviors themselves.”We consider a user's followingrnto others as a normal process of dynamic and coherent behavior, andwemodel the potential propagationrnof the users' following behaviors. Furthermore, based on our previous research on top-krnselection problem, we propose an effective top-k followee recommendation algorithm, calledrnFRFB. FRFB has low complexity and high scalability and, moreover, good adaptability to real-liferndynamic social networks.We conduct extensive experiments, with two real social network datarnsets (Wiki and Twitter), which show that FRFB outperforms the well-known topology-basedrnfollowee recommendation algorithms.
机译:随着诸如微博客站点之类的社交网络的迅速发展,决定关注谁(遵循推荐)成为一个重要的问题。大多数现有的工作完全基于两个传统因素:网络拓扑中两个用户之间的接近度或社交网络中用户生成的内容的相似性,而忽略了用户遵循行为的影响。如何有效地将这两个因素结合起来的挑战仍然悬而未决。此外,大多数研究只是简单地对得分进行排序以找到排名前k的用户,这非常耗时,特别是对于大型网络。在本文中,我们提出了“通过跟随用户自己的行为来预测用户的跟随行为”的想法。我们将用户对他人的关注视为动态和连贯行为的正常过程,并对用户的跟随行为的潜在传播进行建模。此外,基于我们先前对top-krnselect问题的研究,我们提出了一种有效的top-k追随者推荐算法,称为rnFRFB。 FRFB具有低复杂度和高可扩展性,并且对现实生活中的动态社交网络具有良好的适应性。我们通过两个真实的社交网络数据集(Wiki和Twitter)进行了广泛的实验,表明FRFB的性能优于基于拓扑的知名推荐算法。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2018年第15期|e4514.1-e4514.14|共14页
  • 作者单位

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    China-ASEAN Research Institute, GuangXiUniversity, Nanning 530004, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    Department of Electrical and ComputerEngineering, Virginia CommonwealthUniversity, Richmond, VA 23284, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    followee; followee recommendation; follower; following behaviors; social network;

    机译:追随者追随者推荐;追随者以下行为;社交网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号