首页> 外文期刊>Journal of information and computational science >Trust-based Top-k Item Recommendation in Social Networks
【24h】

Trust-based Top-k Item Recommendation in Social Networks

机译:社交网络中基于信任的Top-k项目推荐

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering based methods have a low performance in the context of social recommendation due to the data sparsity issue and not considering the social network information that can be exploited to improve the performance. Trust-based methods attempt to reduce the data sparsity by utilizing the social network information. However, most of these methods are based on the explicit trust statements expressed by users, which are not available in the social networks such as Sina Weibo. In this paper, we present a trust metric to quantitatively measure the recommendation trust between pairs of users by aggregating the implicit trust and trust propagation values. We propose a trust-based latent factor model, which incorporates the pairwise recommendation trust values into the probabilistic model for top-k item recommendation. The experiments on Sina Weibo demonstrate that our method outperforms the collaborative filtering based methods and trust-based methods.
机译:基于协作过滤的方法在社交推荐的情况下由于数据稀疏性问题而没有考虑到较低的性能,并且没有考虑可用于改善性能的社交网络信息。基于信任的方法试图通过利用社交网络信息来减少数据稀疏性。但是,这些方法大多数都是基于用户表达的显式信任声明,在诸如新浪微博等社交网络中不可用。在本文中,我们提出了一种信任度量,通过聚合隐式信任和信任传播值来定量测量用户对之间的推荐信任。我们提出了一种基于信任的潜在因子模型,该模型将成对推荐信任值合并到用于前k个项目推荐的概率模型中。新浪微博上的实验表明,我们的方法优于基于协作过滤的方法和基于信任的方法。

著录项

  • 来源
    《Journal of information and computational science》 |2013年第12期|3685-3696|共12页
  • 作者单位

    School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;

    School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;

    School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China,Department of Computer Science, University of New Mexico, Albuquerque 87131, USA;

    School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;

    School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social Recommendation; Trust Model; Latent Factor Model; Collaborative Filtering;

    机译:社会推荐;信任模型;潜在因子模型;协同过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号