首页> 外文期刊>Computing and visualization in science >Bridging the gap between geometric and algebraic multi-grid methods
【24h】

Bridging the gap between geometric and algebraic multi-grid methods

机译:弥合几何和代数多重网格方法之间的差距

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a multi-grid solver for the discretisation of partial differential equations on complicated domains will be developed. The algorithm requires as input only the given discretisation instead of a hierarchy of discretisations on coarser grids. Such auxiliary grids and discretisations will be generated in a black-box fashion and will be employed to define purely algebraic intergrid transfer operators. The geometric interpretation of the algorithm allows one to use the framework of geometric multigrid methods to prove its convergence. The focus of this paper is on the formulation of the algorithm and the demonstration of its efficiency by numerical experiments while the analysis is carried out for some model problems.
机译:在本文中,将开发一种用于复杂域上偏微分方程离散化的多网格求解器。该算法仅要求输入给定的离散化,而不是粗糙网格上的离散化层次。这样的辅助网格和离散化将以黑匣子的方式生成,并将用于定义纯代数间网格转移算子。该算法的几何解释允许使用几何多重网格方法的框架来证明其收敛性。本文的重点是算法的公式化,并通过数值实验证明其效率,同时对一些模型问题进行了分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号