首页> 外文期刊>Computing and visualization in science >Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids
【24h】

Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids

机译:两分网格上具有跳跃系数的椭圆方程的局部多级预处理器

获取原文
获取原文并翻译 | 示例

摘要

The goal of this paper is to design optimal multilevel solvers for the finite element approximation of second order linear elliptic problems with piecewise constant coefficients on bisection grids. Local multigrid and BPX preconditioners are constructed based on local smoothing only at the newest vertices and their immediate neighbors. The analysis of eigenvalue distributions for these local multilevel preconditioned systems shows that there are only a fixed number of eigenvalues which are deteriorated by the large jump. The remaining eigenvalues are bounded uniformly with respect to the coefficients and the meshsize. Therefore, the resulting preconditioned conjugate gradient algorithm will converge with an asymptotic rate independent of the coefficients and logarithmically with respect to the meshsize. As a result, the overall computational complexity is nearly optimal.
机译:本文的目的是为二等分网格上具有分段常数的二阶线性椭圆问题的有限元逼近设计最佳的多级求解器。局部多网格和BPX预处理器仅在最新顶点及其直接邻居的基础上基于局部平滑构建。对这些局部多级预处理系统的特征值分布进行的分析表明,只有固定数量的特征值会因大跳跃而恶化。其余特征值相对于系数和网格大小统一界定。因此,所得的预处理共轭梯度算法将以与系数无关的渐近速率收敛,并且相对于网格大小以对数形式收敛。结果,总体计算复杂度几乎是最佳的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号