首页> 外文期刊>Computing. Archives for Informatics and Numerical Computation >An adaptive Huber method for weakly singular second kind Volterra integral equations with non-linear dependencies between unknowns and their integrals
【24h】

An adaptive Huber method for weakly singular second kind Volterra integral equations with non-linear dependencies between unknowns and their integrals

机译:未知数与积分之间具有非线性相关性的弱奇异第二类Volterra积分方程的自适应Huber方法

获取原文
获取原文并翻译 | 示例

摘要

Numerical methods for weakly singular Volterra integral equations with non-linear dependencies between unknowns and their integrals, are almost non-existent in the literature. In the present work an adaptive Huber method for such equations is proposed, by extending the method previously formulated for the first kind Abel equations. The method is tested on example integral equations involving integrals with kernels K(t, τ) = (t - τ)^sup -1/2^, K(t, τ) = exp[-λ(t - τ)](t - τ)^sup -1/2^ (where λ > 0), and K(t, τ) = 1. By controlling estimated local discretisation errors, the integral equation can be solved adaptively on a discrete grid of nodes in the independent variable domain, in a step-by-step fashion. The practical accuracy order is close to 2. The accuracy can be varied by varying the prescribed local error tolerance parameter tol, although the actual errors tend to be larger than tol. Approximations to off-nodal solution values can also be computed, with a comparable accuracy. The method appears numerically stable when partial derivatives, of the non-linear function representing the equation, with respect to the unknown and its integral(s), are of the same sign. The stability of the method in the opposite case may be debated. [PUBLICATION ABSTRACT]
机译:在未知数与它们的积分之间具有非线性依赖性的弱奇异Volterra积分方程的数值方法在文献中几乎不存在。在本工作中,通过扩展先前为第一类Abel方程制定的方法,提出了针对此类方程的自适应Huber方法。该方法在涉及积分为K(t,τ)=(t-τ)^ sup -1 / 2 ^,K(t,τ)= exp [-λ(t-τ)]( t-τ)^ sup -1 / 2 ^(其中λ> 0),并且K(t,τ)=1。通过控制估计的局部离散化误差,积分方程可以自适应地在节点的离散网格上求解。独立变量域,并逐步进行。实际精度等级接近2。尽管实际误差往往大于tol,但是可以通过更改规定的局部误差容限参数tol来改变精度。还可以以可比较的精度计算离节点解值的近似值。当表示该方程的非线性函数的偏导数相对于未知数及其积分(一个或多个)具有相同符号时,该方法在数值上看起来稳定。在相反情况下该方法的稳定性可能会受到争议。 [出版物摘要]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号