首页> 外文期刊>Computers & Structures >The application of special matrix product to differential quadrature solution of geomerically nonlinear bending of orthotropic rectangular plates
【24h】

The application of special matrix product to differential quadrature solution of geomerically nonlinear bending of orthotropic rectangular plates

机译:特殊矩阵乘积在正交异性矩形板的几何非线性弯曲微分求积解中的应用

获取原文
获取原文并翻译 | 示例

摘要

The Hadamard and SJT product of matrices are two types of special matrix product. The latter was first defined by Chen. In this study, they are applied to the differential quadrature (DQ) solution of geometrically nonlinear bending of isotropic and orthotropic rectangular plates. By using the Hadamard product, the nonlinear formulations are greatly simplified, while the SJT product approach minimizes the effort to evaluate the Jacobian derivative matrix in the Newton-Raphson method for solving the resultant nonlinear formulations. in addition, the coupled nonlinear formulations for the present problems can easily be decoupled by means of the Hadamard and SJT product. Therefore, the size of the simultaneous nonlinear algebraic equations is reduced by two-thirds and the computing effort and storage requirements are greatly alleviated. Two recent approaches applying the multiple boundary conditions are employed in the present DQ nonlinear computations. The solution accuracies are significantly improved in comparison to the previously given by Bert et al. The numerical results and detailed solution procedures are provided to demonstrate the superb efficiency, accuracy and simplicity of the new approaches in applying DQ method for nonlinear computations.
机译:矩阵的Hadamard和SJT乘积是特殊矩阵乘积的两种类型。后者最早由Chen定义。在这项研究中,它们被应用于各向同性和正交各向异性矩形板的几何非线性弯曲的微分正交(DQ)解。通过使用Hadamard乘积,大大简化了非线性公式,而SJT乘积方法则使用牛顿-拉夫森方法评估雅可比导数矩阵的努力最小化,从而解决了由此产生的非线性公式。此外,可以通过Hadamard和SJT产品轻松解耦当前问题的耦合非线性公式。因此,联立非线性代数方程的大小减少了三分之二,并且大大减轻了计算工作量和存储需求。当前的DQ非线性计算中采用了两种应用多重边界条件的最新方法。与Bert等人先前给出的解决方案相比,该解决方案的准确性得到了显着提高。提供了数值结果和详细的求解程序,以证明将DQ方法应用于非线性计算的新方法的卓越效率,准确性和简便性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号