首页> 外文期刊>Computers & Structures >Nonlinear mixed finite element formulations for the analysis of planar curved beams
【24h】

Nonlinear mixed finite element formulations for the analysis of planar curved beams

机译:平面弯曲梁分析的非线性混合有限元公式

获取原文
获取原文并翻译 | 示例

摘要

In the present paper, two mixed type functionals are presented to analyze the geometrical nonlinear bending behavior of slender planar curved beam by Finite Element Method (FEM). Bernoulli-Euler beam theory is taken into consideration within the context of the small strains but large displacements. Non-linear bending of curved beams in-plane has been investigated in both local and Cartesian coordinate systems. The Euler-Lagrange equations of the Functional I and Functional II which give the equilibrium and constitutive equations are in relation with the Green-Lagrange strain tensor and the first-order approximation (consistent linearization) of the Green-Lagrange strain tensor, respectively. The details of this process are given in Appendix. In the formulation of the problem in Cartesian coordinate, in addition to the boundary terms, that expression has been used, also to obtain the strain quantities which should be in the constitutive expressions in-prior to the equilibrium equations for the first time in this work. For the solution of the non-linear equations of the problems "incremental formulation" has been used. The validity, reliability and robustness of the proposed functionals have been presented by solving sample problems found in the literature. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文提出了两种混合型泛函,用有限元方法(FEM)分析细长平面弯曲梁的几何非线性弯曲行为。在小应变但大位移的情况下考虑了伯努利-欧拉梁理论。在局部和笛卡尔坐标系中都研究了弯曲梁在平面内的非线性弯曲。给出平衡和本构方程的泛函I和泛函II的Euler-Lagrange方程分别与Green-Lagrange应变张量和Green-Lagrange应变张量的一阶近似(一致线性化)有关。此过程的详细信息在附录中给出。在用笛卡尔坐标表示问题时,除使用边界项外,还使用了该表达式来获得应在平衡方程之前的本构表达式中首次出现的应变量。 。为了解决问题的非线性方程,使用了“增量公式”。通过解决文献中发现的样本问题,已经提出了所提出功能的有效性,可靠性和鲁棒性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号