首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids Part 1: Beam concept and geometrically exact nonlinear formulation
【24h】

Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids Part 1: Beam concept and geometrically exact nonlinear formulation

机译:基于三维固体精确解的弯曲和扭曲梁有限元理论,第1部分:梁概念和几何精确非线性公式

获取原文
获取原文并翻译 | 示例

摘要

A geometrically exact and completely consistent finite element theory for curved and twisted beams is proposed. It is based on the kinematical hypothesis generally formulated for large deformation and accounts for all kinds of deformation of a three-dimensional solid: translational and rotational displacements of the cross-sections, warping of their plane and distortion of their contours. The principle of virtual work is applied in a straightforward manner to all non-zero six components of the strain and stress tensors.
机译:提出了弯曲和扭曲梁的几何精确且完全一致的有限元理论。它基于通常针对大变形的运动学假设,并考虑了三维实体的各种变形:横截面的平移和旋转位移,平面的翘曲和轮廓的变形。虚拟功的原理可以直接应用于应变张量和应力张量的所有非零六个分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号