首页> 外文期刊>Computers & Structures >Large deformation analysis of composite spatial curved beams with arbitrary undeformed configurations described by Euler angles with discontinuities and singularities
【24h】

Large deformation analysis of composite spatial curved beams with arbitrary undeformed configurations described by Euler angles with discontinuities and singularities

机译:具有不连续性和奇异性的欧拉角描述的任意未变形结构的复合空间弯曲梁的大变形分析

获取原文
获取原文并翻译 | 示例

摘要

Based on Kirchhoff theory, governing equations of a spatial curved beam with an arbitrary undeformed configuration that undergoes large deformation are established in an arc-length coordinate system and axial extension of the beam is considered. Modified Euler angles are defined to describe geometrical relations and overcome discontinuities of Euler angles. A novel three-layer coordinate system method is developed to overcome singularities of Euler angles associated with Gimbal lock and applied to a challenging composite spatial curved beam problem. A general differential quadrature element method (DQEM) is applied to discretize the nonlinear mathematical model. Connecting conditions are used in the DQEM to deal with discontinuities of composite beams, such as concentrated loads, rigid and hinged joints and so on. A new computing process that uses a trapezoidal integral method in conjunction with a bisection method is employed to obtain modified Euler angles of a spatial curved beam with an arbitrary undeformed configuration. Numerical results are given to assess its validity and effectiveness. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于基尔霍夫理论,在弧长坐标系中建立了具有大变形的任意未变形结构的空间弯曲梁的控制方程,并考虑了梁的轴向延伸。定义了修改后的欧拉角以描述几何关系并克服了欧拉角的不连续性。开发了一种新颖的三层坐标系方法来克服与万向节锁相关的欧拉角的奇异性,并将其应用于具有挑战性的复合空间弯曲梁问题。通用差分正交元法(DQEM)被用于离散非线性数学模型。 DQEM中使用连接条件来处理复合梁的不连续性,例如集中载荷,刚性和铰接节点等。结合梯形积分法和二等分法,采用一种新的计算过程来获得具有任意未变形构造的空间弯曲梁的修正欧拉角。数值结果表明了其有效性和有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Structures》 |2018年第11期|122-134|共13页
  • 作者单位

    Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China;

    Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China;

    Univ Maryland Baltimore Cty, Dept Mech Engn, 1000 Hilltop Circle, Baltimore, MD 21250 USA;

    Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号