首页> 外文期刊>Computers & Structures >Robust integration schemes for generalized viscoplasticity with internal-state variables
【24h】

Robust integration schemes for generalized viscoplasticity with internal-state variables

机译:具有内部状态变量的广义粘塑性的鲁棒积分方案

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in complex viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, we use the unconditionally stable, backward Euler difference scheme. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. Two specific models of this type, which are representatives of the present state-of-the-art in metal viscoplasticity, are considered in the applications reported here; i.e., generalized viscoplasticity with complete potential structure fully associative (GVIPS) and non-associatove (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in three-dimensions as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness re emphasized in developing the (local) iterative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for the GVIPS model, with the maximum matrix
机译:本文关注的是复杂粘塑性模型中流动和演化方程的隐式时间步长积分器通用框架的开发。主要目标是提供一个完整的理论公式,并详细说明其有限元实现中涉及的算法和数值分析方面,以及在一组完整的测试案例中严格评估已开发方案的数值性能。从理论上讲,我们使用无条件稳定,后向欧拉差分方案。它的数学结构具有足够的通用性,可以使用内部变量统一处理不同类别的粘塑性模型。在这里报道的应用中考虑了两种特定类型的模型,它们代表了金属粘塑性的最新技术。即具有完全潜在结构完全关联(GVIPS)和非关联(NAV)模型的广义粘塑性。为这两个模型开发的矩阵形式可直接应用于三维和子空间应用中的初始各向同性和各向异性材料(即平面应力/应变,轴对称,壳中的广义平面应力)。在计算方面,在开发(局部)迭代算法时强调了与效率和鲁棒性有关的问题。特别是,对于GVIPS模型,明确地给出了残差矢量和(一致的)材料切线刚度阵列的闭式表达式,其中矩阵最大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号