首页> 外文期刊>Computers & Structures >Mathematical and historical reflections on the lowest-order finite element models for thin structures
【24h】

Mathematical and historical reflections on the lowest-order finite element models for thin structures

机译:薄结构最低阶有限元模型的数学和历史反思

获取原文
获取原文并翻译 | 示例

摘要

We discuss the mathematical theory and history of the lowest-order linear and bilinear finite element models for beams, arches, plates and shells. The finite element formulations considered are based on the non-asymptotic Timo-shenko beam and Reissner-Mindlin plate models and the analogies of these models for arches and shells. We follow some of the historical roots of the successful linear and bilinear elements, to find various physical justifications for formulations that now may be understood as purely numerical modifications within the usual energy principle. The simplified mathematical theory of such formulations is outlined, first in cases of the beam, arch and plate. We finally focus on the still challenging and largely open problems arising in the modelling of shell deformations. We consider here a simplified shallow shell model and an interpretation of the MITC4 shell element within that model, called M1TC4-S. We sum up the results of the recent finite element theory for MITC4-S, concerning the approximation of bending- and membrane-dominated deformations of a shallow shell.
机译:我们讨论了梁,拱,板和壳的最低阶线性和双线性有限元模型的数学理论和历史。所考虑的有限元公式是基于非渐近的Timo-shenko梁和Reissner-Mindlin板模型以及这些模型的拱形和壳体模型。我们遵循成功的线性和双线性元素的一些历史渊源,以找到各种物理上的理由来证明配方,现在可以将其理解为通常的能量原理内的纯数字修改形式。首先,在梁,拱和板的情况下,概述了此类公式的简化数学理论。最后,我们集中讨论在壳变形建模中仍然存在的挑战性和开放性问题。我们在这里考虑简化的浅壳模型,并解释该模型中称为M1TC4-S的MITC4壳元素。我们总结了最近的MITC4-S有限元理论的结果,涉及浅壳弯曲和膜为主的变形的近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号