首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Modeling large deformations of thin-walled SMA structures by shell finite elements
【24h】

Modeling large deformations of thin-walled SMA structures by shell finite elements

机译:用壳有限元建模薄壁SMA结构的大变形

获取原文
获取原文并翻译 | 示例

摘要

A B S T R A C T Many shape memory alloy (SMA) applications, such as biomedical devices, electromechanical actuators, and elastocaloric cooling devices, are based on thin-walled flat or shell-like structures. An advanced design of such structures requires the development of an efficient and accurate numerical tool for simulations of very thin and curved SMA structures that may experience large deformations and even buckling upon thermo-mechanical loading. So far, finite element models for finite strain deformations of SMA structures have been based on 3D solid formulations, which are relatively inefficient for solving (thin) shell problems. In this paper, we present a finite element model for the analysis of shape memory alloy shells. Our model is based on a 7-parameter, large-rotation, one-director shell formulation, which takes into account a fully three-dimensional form of the constitutive equations for the isothermal transformations of isotropic superelasticity, as well as the shape-memory effect in a simplified way. In fact, we present three 4-node shell finite elements for SMAs. Two of them use the assumed natural strain concepts for the transverse shear strains, through-the-thickness normal strain, and membrane strains. The third element is a combination of the assumed natural strain and the enhanced assumed strain concepts, applied to satisfy the zero through-the-thickness-normal-stress condition for thin geometries to a high degree of accuracy. After a detailed description of the SMA finite element models for shells in the first part of the paper, numerical examples in the second part illustrate the approach. Compared to 3D solid SMA formulations, our results show excellent accuracy, even with a significantly reduced number of degrees of freedom, which consequently translates into a reduction in the computational time. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
机译:A B S T R A C T许多形状记忆合金(SMA)应用,例如生物医学装置,机电致动器和弹性冷却装置,基于薄壁的平坦或壳状结构。这种结构的先进设计需要开发有效和准确的数字工具,用于模拟非常薄的和弯曲的SMA结构,其可能在热机械负载时经历大变形甚至弯曲。到目前为止,用于SMA结构的有限应变变形的有限元模型基于3D实体配方,其对求解(薄)壳问题相对效率。本文介绍了一种用于分析形状记忆合金壳的有限元模型。我们的模型基于7参数,大旋转,一道壳牌配方,其考虑了各向同性超弹性的等温转化以及形状记忆效果的完全三维形式的组成方程。以简化的方式。实际上,我们为SMA提供了三个4节点壳有限元。其中两个使用假定的天然应变概念,用于横向剪切菌株,厚度正常菌株和膜菌株。第三个元件是假设的自然应变和增强的假设应变概念的组合,其施加以满足薄几何形状的零厚度正常应力条件,以高度精度。在纸张第一部分的壳体的SMA有限元模型的详细描述之后,第二部分中的数值示例说明了这种方法。与3D实体SMA配方相比,我们的结果表明了出色的准确性,即使具有显着减少的自由度,因此转化为计算时间的减少。 (c)2021作者。由elsevier b.v发布。这是CC下的开放式访问文章(http://creativecommons.org/licenses/by/4.0/)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号