首页> 外文期刊>Computers & Structures >Scale-size effects analysis of optimal periodic material microstructures designed by the inverse homogenization method
【24h】

Scale-size effects analysis of optimal periodic material microstructures designed by the inverse homogenization method

机译:利用逆均化方法设计的最佳周期性材料微观结构的尺度效应分析

获取原文
获取原文并翻译 | 示例

摘要

Periodic homogenization models are often used to compute the elastic properties of periodic composite materials based on the shape/periodicity of a given material unit-cell. Conversely, in material design, the unit-cell is not known a priori, and the goal is to design it to attain specific properties values inverse homogenization problem. This problem is often solved by formulating it as an optimization problem. In this approach, the unit-cell is assumed infinitely small and with periodic boundary conditions. However, in practice, the composite material comprises a finite number of measurable unit-cells and the stress/strain fields are not periodic near the structure boundary. It is thus critical to investigate whether the obtained topologies are affected when applied in the context of real composites. This is done here by scaling the unit-cell an increasing number of times and accessing the apparent properties of the resulting composite by means of standard numerical experiments. (C) 2016 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
机译:周期性均质化模型通常用于基于给定材料晶胞的形状/周期性来计算周期性复合材料的弹性特性。相反,在材料设计中,先验单元是未知的,其目的是设计它以获得特定的特性值逆均质化问题。通常通过将其公式化为优化问题来解决该问题。在这种方法中,单位晶胞被假定为无限小并且具有周期性边界条件。然而,实际上,复合材料包括有限数量的可测量晶胞,并且应力/应变场在结构边界附近不是周期性的。因此,至关重要的是,研究在实际复合材料中应用时,所获得的拓扑是否会受到影响。这是通过按比例增加晶胞的数量并通过标准数值实验访问所得复合材料的表观特性来完成的。 (C)2016 Civil-Comp Ltd和Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号