首页> 外文期刊>Computers & Structures >New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures
【24h】

New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures

机译:均质分析的新求解方法及其在周期性微结构材料宏观弹性常数预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

A new solution method is proposed for the homogenization analysis of materials with periodic microstructures. A homogeneous integral equation is derived to replace the conventional inhomogeneous integral equation related to the microscopic mechanical behavior in the basic unit cell by introducing a new characteristic function. Based on the new solution method, the computational problem of the characteristic function subject to initial strains and periodic boundary conditions is reduced to a simple displacement boundary value problem without initial strains, which simplifies the computational process. Applications to the predication of macroscopic elastic constants of materials with various two-dimensional and three-dimensional periodic microstructures are presented. The numerical results are compared with previous results obtained from the Hapin-Tsai equations, Mori-Tanaka method and conventional homogenization calculations, which proves that the present method is valid and efficient for prediction of the macroscopic elastic constants of materials with various periodic microstructures.
机译:提出了一种新的求解方法,对具有周期性微观结构的材料进行均质分析。通过引入新的特征函数,推导了一个齐次积分方程来代替与基本单位单元中的微观力学行为有关的常规不齐次积分方程。基于新的求解方法,将特征函数在初始应变和周期边界条件下的计算问题简化为简单的位移边界值问题,而没有初始应变,简化了计算过程。介绍了在具有各种二维和三维周期性微结构的材料的宏观弹性常数的预测中的应用。将数值结果与从Hapin-Tsai方程,Mori-Tanaka方法和常规均化计算获得的先前结果进行了比较,证明了该方法对于预测具有各种周期性微结构的材料的宏观弹性常数是有效和高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号