首页> 外文期刊>Computers & Security >An IRL-based malware adversarial generation method to evade anti-malware engines
【24h】

An IRL-based malware adversarial generation method to evade anti-malware engines

机译:基于IRL的恶意软件对抗生成方法逃避防恶意发动机

获取原文
获取原文并翻译 | 示例

摘要

In order to reduce the risk of malware, researchers proposed various malware detection methods, in which the machine learning-based method has been paid more and more attention. However, malware developers used a variety of countermeasures to evade detection. For example, they may generate so-called adversarial examples to interfere with machine-learning-based detectors. An adversarial example is one that makes changes to the malware so that the generated malware can evade detection while retaining the malicious functionality. In the complex adversarial environment, only the in-depth analysis of the adversarial code can comprehensively improve the detection level of the detector. In this work, we used improved reinforcement learning to generate adversarial examples. The method accepts malicious code samples as input, and takes detection engine and feature extractor as the environment, to output several malicious samples that can avoid the detection by adjusting each detection results. Compared with the existing methods based on reinforcement learning, our method can generate reward function automatically without manual setting, which greatly improves the flexibility of the model. We compared the effectiveness of our algorithm with other methods in some of the literature on a set of portable executable files (PEs). Experimental results show that our algorithm is more flexible and effective.
机译:为了降低恶意软件的风险,研究人员提出了各种恶意软件检测方法,其中基于机器学习的方法越来越多地关注。但是,恶意软件开发人员使用各种对策来逃避检测。例如,它们可以生成所谓的对手示例以干扰基于机器学习的探测器。对手示例是对恶意软件进行更改的副主径示例,以便生成的恶意软件可以在保留恶意功能时逃避检测。在复杂的对抗环境中,只有对抗性代码的深度分析可以全面改善探测器的检测水平。在这项工作中,我们使用改进的加固学习来产生对抗性示例。该方法接受恶意​​代码样本作为输入,并将检测引擎和特征提取器作为环境,输出若干可以通过调整每个检测结果来避免检测的若干恶意样本。与基于强化学习的现有方法相比,我们的方法可以自动在没有手动设置的情况下自动生成奖励功能,这大大提高了模型的灵活性。我们将算法与其他方法中的其他方法进行了比较了一组便携式可执行文件(PES)的其他方法。实验结果表明,我们的算法更加灵活且有效。

著录项

  • 来源
    《Computers & Security》 |2021年第5期|102118.1-102118.15|共15页
  • 作者

    Xintong Li; Qi Li;

  • 作者单位

    Beijing University of Posts and Telecommunications Beijing 100876 China Beijing Qihoo technology co. LTD China;

    Beijing University of Posts and Telecommunications Beijing 100876 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep machine learning; Antimalware; Engines evasion; Reinforcement learning;

    机译:深机学习;antimalware;发动机逃避;加强学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号