首页> 中文期刊> 《网络安全与数据治理》 >基于特征生成方法的Android恶意软件检测方法

基于特征生成方法的Android恶意软件检测方法

     

摘要

针对传统特征工程中需要大量专家经验和人力的不足,研究了基于特征生成方法的Android恶意软件检测方法。基于UC Berkeley的ExploreKit自动特征生成方法,通过对原始特征计算获得大量候选特征,根据候选特征的元特征预测其性能并进行评估排序,使用贪心算法从中选出能够提升模型性能的新特征。从APK中提取了敏感API、危险权限等多种特征,在根据信息增益对特征进行筛选后,输入到特征生成框架中,使用C4.5、SVM和随机森林等作为分类模型。实验证明,该方法使错误率平均降低了24.6%,准确率达到了96.5%,曲线下面积(Area Under Curve,AUC)达到了0.99。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号