首页> 外文期刊>Computers & Security >Insider-threat detection using Gaussian Mixture Models and Sensitivity Profiles
【24h】

Insider-threat detection using Gaussian Mixture Models and Sensitivity Profiles

机译:使用高斯混合模型和敏感度分布图进行内部威胁检测

获取原文
获取原文并翻译 | 示例

摘要

The insider threat is one of the most challenging problems to detect due to its complex nature and significant impact on organisations. Insiders pose a great threat on organisations due to their knowledge on the organisation and its security protocols, their authorised access to the organisation's resources, and the difficulty of discerning the behaviour of an insider threat from a normal employee's behavior (Gheyas and Abdallah, 2016). As a result, the insider-threat field faces the challenge of developing detection solutions that are able to detect threats without generating a great number of false positives, and are able to take into consideration the non-technical aspect of the problem. This paper introduces a novel automated anomaly detection method that uses Gaussian Mixture Models for modelling the normal behaviour of employees to detect anomalous behaviour that may be malicious. The paper also introduces a novel approach to insider-threat detection that capitalises on the knowledge of security experts during analysis using visual analytics and sensitivity profiles which is a novel approach to re-contextualise detection output by considering outside, qualitative, non-technical factors that analysts may be privy to, but not the detection method. A feasibility study with experts in threat detection was conducted to evaluate the detection performance of the proposed solution and its usability. The results demonstrate the success of designing a solution that builds on the knowledge of security experts during analysis and reduces the number of false positives generated by automated anomaly detection. The work presented in the paper also demonstrates the potential of introducing more methods for capitialising on the knowledge of security experts to improve the false negative rate, and the potential of designing sensitivity profiles. (C) 2018 Published by Elsevier Ltd.
机译:由于内部威胁的复杂性和对组织的重大影响,内部威胁是要发现的最具挑战性的问题之一。内部人员由于对组织及其安全协议的了解,对组织资源的授权访问以及难以从正常员工的行为中识别内部威胁的行为而对组织构成了巨大威胁(Gheyas和Abdallah,2016年) 。结果,内部威胁领域面临着开发检测解决方案的挑战,该解决方案能够在不产生大量误报的情况下检测威胁,并能够考虑问题的非技术性方面。本文介绍了一种新颖的自动异常检测方法,该方法使用高斯混合模型对员工的正常行为进行建模,以检测可能是恶意的异常行为。本文还介绍了一种新颖的内部威胁检测方法,该方法利用了可视化分析和敏感度配置文件在分析过程中利用安全专家的知识,这是一种通过考虑外部,定性,非技术因素重新构造检测输出的新方法分析人员可能很无知,但检测方法却没有。与威胁检测专家进行了可行性研究,以评估所提出解决方案的检测性能及其可用性。结果证明了设计解决方案的成功,该解决方案基于分析过程中安全专家的知识,并减少了由自动异常检测产生的误报数量。本文介绍的工作还展示了在安全专家的知识上引入更多用于自动化的方法的潜力,以提高错误否定率,以及设计敏感度配置文件的潜力。 (C)2018由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号