首页> 外文期刊>Computers & operations research >Exact and heuristic algorithms for the interval data robust assignment problem
【24h】

Exact and heuristic algorithms for the interval data robust assignment problem

机译:区间数据鲁棒分配问题的精确和启发式算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the Assignment Problem with interval data, where it is assumed that only upper and lower bounds are known for each cost coefficient. It is required to find a minmax regret assignment The problem is known to be strongly NP-hard. We present and compare computationally several exact and heuristic methods, including Benders decomposition, using CPLEX, a variable depth neighborhood local search, and two hybrid population-based heuristics. We report results of extensive computational experiments.
机译:我们考虑带有间隔数据的分配问题,其中假定每个成本系数的上限和下限都是已知的。需要找到一个最小最大后悔分配。问题被认为是强烈的NP难题。我们介绍并计算比较了几种精确和启发式方法,包括使用CPLEX的Benders分解,可变深度邻域局部搜索和两种基于混合人口的启发式方法。我们报告了广泛的计算实验的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号