首页> 外文期刊>Computers & operations research >SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems
【24h】

SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems

机译:SO-MI:一种替代模型算法,用于计算量大的非线性混合整数黑盒全局优化问题

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a surrogate model based algorithm for computationally expensive mixed-integer black-box global optimization problems with both binary and non-binary integer variables that may have computationally expensive constraints. The goal is to find accurate solutions with relatively few function evaluations. A radial basis function surrogate model (response surface) is used to select candidates for integer and continuous decision variable points at which the computationally expensive objective and constraint functions are to be evaluated. In every iteration multiple new points are selected based on different methods, and the function evaluations are done in parallel. The algorithm converges to the global optimum almost surely. The performance of this new algorithm, SO-MI, is compared to a branch and bound algorithm for nonlinear problems, a genetic algorithm, and the NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search) algorithm for mixed-integer problems on 16 test problems from the literature (constrained, unconstrained, unimodal and multi-modal problems), as well as on two application problems arising from structural optimization, and three application problems from optimal reliability design. The numerical experiments show that SO-MI reaches significantly better results than the other algorithms when the number of function evaluations is very restricted (200-300 evaluations).
机译:本文介绍了一种基于替代模型的算法,用于同时具有二进制和非二进制整数变量且计算量大的约束的计算量大的混合整数黑盒全局优化问题。目的是找到功能评估相对较少的准确解决方案。径向基函数替代模型(响应面)用于选择整数和连续决策变量点的候选项,在这些点上要评估计算上昂贵的目标函数和约束函数。在每次迭代中,将基于不同的方法选择多个新点,并且并行执行功能评估。该算法几乎可以肯定地收敛于全局最优。将这种新算法SO-MI的性能与针对非线性问题的分支定界算法,遗传算法以及针对16个测试问题的混合整数问题的NOMAD(基于网格自适应直接搜索的非平稳优化)算法进行了比较文献(约束,无约束,单峰和多峰问题),以及结构优化产生的两个应用问题,以及最优可靠性设计产生的三个应用问题。数值实验表明,当功能评估的数量非常有限时(200-300个评估),SO-MI的效果明显优于其他算法。

著录项

  • 来源
    《Computers & operations research》 |2013年第5期|1383-1400|共18页
  • 作者单位

    Tampere University of Technology, Department of Mathematics, P.O. Box 553, 33101 Tampere, Finland,Cornell University, School of Civil and Environmental Engineering, School of Operations Research and Information Engineering, Center of Applied Mathematics, 220 Hollister Hall, Ithaca, NY 14853-3501, United States;

    Cornell University, School of Civil and Environmental Engineering, School of Operations Research and Information Engineering, Center of Applied Mathematics, 220 Hollister Hall, Ithaca, NY 14853-3501, United States;

    Tampere University of Technology, Department of Mathematics, P.O. Box 553, 33101 Tampere, Finland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    surrogate model; mixed-integer optimization; multimodal; black-box; nonlinear; global optimization; radial basis functions; derivative-free;

    机译:替代模型混合整数优化;多式联运黑盒子;非线性全局优化径向基函数;无导数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号