首页> 外文期刊>Computers & operations research >Multi-step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach
【24h】

Multi-step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach

机译:半导体制造的多步骤虚拟度量:一种基于多层次和正则化方法的方法

获取原文
获取原文并翻译 | 示例

摘要

In semiconductor manufacturing, wafer quality control strongly relies on product monitoring and physical metrology. However, the involved metrology operations, generally performed by means of scanning electron microscopes, are particularly cost-intensive and time-consuming. For this reason, in common practice a small subset only of a productive lot is measured at the metrology stations and it is devoted to represent the entire lot Virtual Metrology (VM) methodologies are used to obtain reliable predictions of metrology results at process time, without actually performing physical measurements. This goal is usually achieved by means of statistical models and by linking process data and context information to target measurements. Since semiconductor manufacturing processes involve a high number of sequential operations, it is reasonable to assume that the quality features of a given wafer (such as layer thickness and critical dimensions) depend on the whole processing and not on the last step before measurement only. In this paper, we investigate the possibilities to enhance VM prediction accuracy by exploiting the knowledge collected in the previous process steps. We present two different schemes of multi-step VM, along with dataset preparation indications. Special emphasis is placed on regression techniques capable of handling high-dimensional input spaces. The proposed multi-step approaches are tested on industrial production data.
机译:在半导体制造中,晶圆质量控制在很大程度上取决于产品监控和物理计量。然而,通常通过扫描电子显微镜进行的所涉及的计量操作特别耗费成本并且耗时。因此,在常规实践中,仅在计量站测量一小批生产批次,并专门代表整个批次。虚拟计量(VM)方法用于在处理时获得可靠的计量结果预测,而无需实际执行物理测量。通常通过统计模型并将过程数据和上下文信息链接到目标度量值来实现此目标。由于半导体制造过程涉及大量的顺序操作,因此可以合理地假设给定晶片的质量特征(例如层厚度和临界尺寸)取决于整个过程,而不取决于测量之前的最后一步。在本文中,我们研究了通过利用先前处理步骤中收集的知识来提高VM预测准确性的可能性。我们提出了两种不同的多步VM方案,以及数据集准备指示。特别强调能够处理高维输入空间的回归技术。建议的多步骤方法已在工业生产数据上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号