首页> 外文期刊>Computers & operations research >Congestion avoiding heuristic path generation for the proactive route guidance
【24h】

Congestion avoiding heuristic path generation for the proactive route guidance

机译:拥塞避免了启发式路径生成的主动路径引导

获取原文
获取原文并翻译 | 示例

摘要

The benefits in reducing traffic congestion of system optimum with respect to user equilibrium traffic assignments are well-known. Recently a linear programming based approach was proposed that aims at achieving a compromise between the system perspective, namely eliminating congestion, and the user perspective, that is minimizing individual travel times. The approach, called proactive route guidance, assigns to users paths that increase the travel times by at most a given percentage, called Maximum allowed travel inconvenience. The approach requires the enumeration of all feasible paths that may be memory and time consuming, especially when large networks and/or high values of the Maximum allowed travel inconvenience are considered. In this paper a heuristic is presented to generate a subset of all feasible paths that is based on the iterative search of improving paths. Computational experiments show that the number of paths generated by the heuristic is smaller with respect to the complete set by one or two orders of magnitude on small instances and by higher orders of magnitude when the size of the instances increases. On instances with 150 nodes, where the complete enumeration takes an acceptable computational time, the results show that the quality of the heuristic solutions is very close to that of the optimal ones. (C) 2018 Elsevier Ltd. All rights reserved.
机译:相对于用户均衡流量分配,减少系统最佳流量拥塞的好处是众所周知的。最近,提出了一种基于线性编程的方法,其目的是在系统角度(即消除拥塞)和用户角度(即,最大限度地减少个人出行时间)之间达成折衷。这种称为主动路线引导的方法可为用户分配最多增加给定百分比的旅行时间的路径,称为最大允许旅行不便。该方法要求列举所有可能的内存和时间消耗的可行路径,特别是在考虑大型网络和/或“最大允许旅行不便”的高值时。本文提出了一种启发式算法,它基于改进路径的迭代搜索来生成所有可行路径的子集。计算实验表明,相对于完整的集合,启发式算法生成的路径数在小型实例上要少一个或两个数量级,而在实例大小增加时,则要高得多。在具有150个节点的实例上,其中完整的枚举花费了可接受的计算时间,结果表明,启发式解决方案的质量非常接近最佳解决方案的质量。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号