首页> 外文期刊>Computers & mathematics with applications >Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term
【24h】

Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term

机译:具有四阶导数项的非线性时间分数阶扩散问题的时间二阶有限差分/有限元算法

获取原文
获取原文并翻译 | 示例

摘要

In this article, we study and analyze a Galerkin mixed finite element (MFE) method combined with time second-order discrete scheme for solving nonlinear time fractional diffusion equation with fourth-order derivative term. We firstly introduce an auxiliary variable sigma = Delta u, reduce the fourth-order problem into a coupled system with two equations, discretize the obtained coupled system at time t(k-alpha/2) by a second-order difference scheme with second-order approximation for fractional derivative, then formulate mixed weak formulation and fully discrete MFE scheme. Further, we give the detailed proof for stability of scheme, the existence and uniqueness of MFE solution, and a priori error estimates. Finally, by some numerical computations, we test the theoretical results, which illustrate that we can obtain the numerical results for two variables, moreover, we arrive at second-order time convergence orders, which are higher than the ones yielded by the L1-approximation. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究和分析了Galerkin混合有限元(MFE)方法与时间二阶离散方案相结合的方法,用于求解具有四阶导数项的非线性时间分数扩散方程。我们首先引入一个辅助变量sigma = Delta u,将四阶问题简化为一个具有两个方程的耦合系统,并在时间t(k-alpha / 2)处通过二阶差分方案离散化所获得的耦合系统。对分数导数进行阶次逼近,然后制定混合弱公式和完全离散MFE方案。此外,我们给出了方案稳定性,MFE解决方案的存在和唯一性以及先验误差估计的详细证明。最后,通过一些数值计算,我们对理论结果进行了测试,结果表明我们可以获得两个变量的数值结果,此外,我们得出了二阶时间收敛阶,该阶次阶收敛性高于L1逼近产生的阶数。 。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号