首页> 外文期刊>Computers & mathematics with applications >A variational framework for the strain-smoothed element method
【24h】

A variational framework for the strain-smoothed element method

机译:一种变形框架,用于应变平滑元件方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to a rigorous mathematical foundation for the convergence properties of the strain-smoothed element (SSE) method. The SSE method has demonstrated improved convergence behaviors compared to other strain smoothing methods through various numerical examples; however, there has been no theoretical evidence for the convergence behavior. A unique feature of the SSE method is the construction of smoothed strain fields within elements by fully unifying the strains of adjacent elements. Owing to this feature, convergence analysis is required, which is different from other existing strain smoothing methods. In this paper, we first propose a novel mixed variational principle wherein the SSE method can be interpreted as a Galerkin approximation of that. The proposed variational principle is a generalization of the well-known Hu-Washizu variational principle; thus, various existing strain smoothing methods can be expressed in terms of the proposed variational principle. With a unified view of the SSE method and other existing methods through the proposed variational principle, we analyze the convergence behavior of the SSE method and explain the reason for the improved performance compared to other methods. We also present numerical experiments that support our theoretical results.
机译:本文致力于严格的数学基础,用于应变平滑元件(SSE)方法的收敛性。通过各种数值例子,SSE方法证明了与其他应变平滑方法相比的改善行为;但是,没有理论上的趋同行为证据。 SSE方法的独特特征是通过完全统一相邻元件的菌株来构造元件内的平滑应变场。由于该特征,需要收敛分析,这与其他现有的应变平滑方法不同。在本文中,我们首先提出了一种新颖的混合变分原理,其中所述SSE方法可以被解释为那个Galerkin近似。所提出的变分原理是众所周知的胡垫子变分原理的概括;因此,各种现有的应变平滑方法可以以所提出的变分原理表达。通过SSE方法和其他现有方法的统一视图通过所提出的变分原理,我们分析了SSE方法的收敛行为,并解释了与其他方法相比改进性能的原因。我们还提供了支持我们理论结果的数值实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号