首页> 外文期刊>Computers & mathematics with applications >A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations
【24h】

A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations

机译:具有时间分数扩散方程的可变阶Caputo分数衍生物的快速方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a fast algorithm for the variable-order (VO) Caputo fractional derivative based on a shifted binary block partition and uniform polynomial approximations of degree r. Compared with the general direct method, the proposed algorithm can reduce the memory requirement from O(n) to O(r log n) storage and the complexity from O(n(2)) to O(m log n) operations, where n is the number of time steps. As an application, we develop a fast finite difference method for solving a class of VO time-fractional diffusion equations. The computational workload is of O(rmn log n) and the active memory requirement is of O(rm log n), where m denotes the size of spatial grids. Theoretically, the unconditional stability and error analysis for the proposed fast finite difference method are given. Numerical results of one and two dimensional problems are presented to demonstrate the well performance of the proposed method. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在本文中,我们基于移位的二进制块分区和程度R的均匀多项式近似来提出一种快速算法的变速阶(VO)Caputo分数衍生物。与一般直接方法相比,所提出的算法可以将来自O(n)到O(r log n)存储的内存要求降低到O(n(2))到O(m log n)操作的复杂性,其中n是时间次数。作为应用,我们开发了一种用于求解一类VO时间分数扩散方程的快速有限差分方法。计算工作负载是O(RMN Log N),活动内存要求是O(RM Log N),其中M表示空间网格的大小。理论上,给出了所提出的快速有限差分方法的无条件稳定性和误差分析。提出了一个和二维问题的数值结果以证明所提出的方法的井性能。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号