首页> 外文期刊>Applied numerical mathematics >A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions
【24h】

A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions

机译:预处理的快速有限元近似于多个空间尺寸的可变阶时间分数扩散方程

获取原文
获取原文并翻译 | 示例

摘要

We develop a preconditioned fast divided-and-conquer finite element approximation for the initial-boundary value problem of variable-order time-fractional diffusion equations. Due to the impact of the time-dependent variable order, the coefficient matrix of the resulting all-at-once system does not have a Toeplitz-like structure. In this paper we derive a fast approximation of the coefficient matrix by the means of a sum of Toeplitz matrices multiplied by diagonal matrices. We show that the approximation is asymptotically consistent with the original problem, which requires O(MN log~3 N) computational complexity and O(MN log~2 N) memory with M and N being the numbers of degrees of freedom in space and time, respectively. Furthermore, a preconditioner is introduced to reduce the number of iterations caused by the bad condition number of the coefficient matrix. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method.
机译:我们开发了一个预处理的快速划分和征服有限元近似,用于可变阶时间分数扩散方程的初始边界值问题。由于时间依赖性可变顺序的影响,所得到的全部系统的系数矩阵不具有托普利特状结构。在本文中,我们通过乘以对角矩阵乘以的脚趾矩阵的方式得出系数矩阵的快速近似。我们表明近似值与原始问题渐近呈渐关节,这需要使用m和n(mn log〜3 n)计算复杂度和o(mn log〜2 n)存储器,是空间和时间自由度的数量, 分别。此外,引入了预处理器以减少由系数矩阵的状况不良引起的迭代次数。提出了数值实验以证明所提出的方法的有效性和效率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号