首页> 外文期刊>Computers & mathematics with applications >Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations
【24h】

Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations

机译:完全离散的可压缩欧拉和Navier-Stokes方程的明确局部熵稳定方案

获取原文
获取原文并翻译 | 示例

摘要

Recently, relaxation methods have been developed to guarantee the preservation of a single global functional of the solution of an ordinary differential equation. Here, we generalize this approach to guarantee local entropy inequalities for finitely many convex functionals (entropies) and apply the resulting methods to the compressible Euler and Navier-Stokes equations. Based on the unstructured hp-adaptive SSDC framework of entropy conservative or dissipative semidiscretizations using summation-by-parts and simultaneous-approximation-term operators, we develop the first discretizations for compressible computational fluid dynamics that are primary conservative, locally entropy stable in the fully discrete sense under a usual CFL condition, explicit except for the parallelizable solution of a single scalar equation per element, and arbitrarily high-order accurate in space and time. We demonstrate the accuracy and the robustness of the fully-discrete explicit locally entropy-stable solver for a set of test cases of increasing complexity. (C) 2020 Elsevier Ltd. All rights reserved.
机译:最近,已经开发了放松方法以保证保存常微分方程的解决方案的单一全局功能。在这里,我们概括了这种方法,以保证有限许多凸起功能(熵)的局部熵不等式,并将所产生的方法应用于可压缩欧拉和Navier-Stokes方程。基于使用符合零件和同时逼近术语运算符的熵保守或耗散半吸收的非结构化HP-Adaptive SSDC框架,我们开发了主要保守的可压缩计算流体动力学的第一种离散化,全面熵稳定除了通常的CFL条件下的离散意义,除了单个标量的单个标量程的并行解决方案的并行解决方案,以及在空间和时间内的任意高阶精确。我们展示了全离散的明确局部熵稳定求解器的准确性和稳健性,用于一组增加复杂性的一组测试用例。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号