首页> 外文期刊>Computers & mathematics with applications >A partial differential equation model with age-structure and nonlinear recidivism: Conditions for a backward bifurcation and a general numerical implementation
【24h】

A partial differential equation model with age-structure and nonlinear recidivism: Conditions for a backward bifurcation and a general numerical implementation

机译:具有年龄结构和非线性常规的局部微分方程模型:向后分叉的条件和通用数值实现

获取原文
获取原文并翻译 | 示例

摘要

We formulate an age-structured three-staged nonlinear partial differential equation model that features nonlinear recidivism to the infected (infectious) class from the temporarily recovered class. Equilibria are computed, as well as local and global stability of the infection-free equilibrium. As a result, a backward-bifurcation exists under necessary and sufficient conditions. A generalized numerical framework is established and numerical experiments are explored for two positive solutions to exist in the infectious class. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们制定了一个年龄结构的三分阶段非线性部分微分方程模型,其来自临时恢复的课程的受感染(传染性)类的非线性常规。计算平衡,以及无感染平衡的局部和全球稳定性。结果,在必要和充分的条件下存在落后分叉。建立了广义数值框架,探索了在传染性课程中存在的两种阳性解决方案的数值实验。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号