首页> 美国政府科技报告 >Research in Nonlinear Partial Differential Equations and Bifurcation Theory
【24h】

Research in Nonlinear Partial Differential Equations and Bifurcation Theory

机译:非线性偏微分方程与分岔理论研究

获取原文

摘要

We prove a necessary condition and a sufficient condition for the existence of steady plane wave solutions to the Navier Stokes equations for a reacting gas. These solutions represent plane detonation waves, and converge to ZND detonation waves as the viscosity, heat conductivity, and species diffusion rates tend to zero. We assume that the Prandtl number is 3/4, but we permit arbitrary Lewis numbers. We make no assumption concerning the activation energy. We show that the stagnation enthalpy and the entropy flux are always monotone for such solutions, and that the mass density and pressure are nearly always not monotone, as predicted by the ZND theory. In certain parameter ranges, typically that of large diffusion, many of these waves have the appearance of a weak detonation followed by an inert shock wave. This confirms a phenomenon observed in numerical calculations and in a model system by Colella, Majda, and Roytburd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号