首页> 外文期刊>Computers & mathematics with applications >A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient
【24h】

A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient

机译:一种具有变系数的二维时间分数扩散方程的新型高阶近似方案

获取原文
获取原文并翻译 | 示例

摘要

Based on the spatial quasi-Wilson nonconforming finite element method and temporal L2 - 1(sigma) , formula, a fully-discrete approximate scheme is proposed for a two-dimensional time-fractional diffusion equations with variable coefficient on anisotropic meshes. In order to demonstrate the stable analysis and error estimates, several lemmas are provided, which focus on high accuracy about projection and superclose estimate between the interpolation and projection. Unconditionally stable analysis are derived in L-2-norm and broken H-1-norm. Moreover, convergence result of accuracy O(h(2) + tau(2)) and superclose property of accuracy O(h(2) + tau(2)) are deduced by combining interpolation with projection, where h and tau are the step sizes in space and time, respectively. And then, the global superconvergence is presented by employing interpolation post processing operator. Finally, numerical results are provided to demonstrate the validity of the theoretical analysis. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于空间Quasi-Wilson不合格有限元方法和时间L2 - 1(Sigma),用于在各向异性网眼上具有可变系数的二维时间分流扩散方程,提出了完全离散近似方案。为了证明稳定的分析和误差估计,提供了几种LEMMAS,其专注于在插值和投影之间的投影和超核估计的高精度。无条件稳定的分析衍生于L-2 - 规范和破碎的H-1-NOM。此外,通过将插值与投影组合,将中H和TAU与精度O(H(2)+ Tau(2))和精度O(H(2)+ Tau(2))推断出精度O(H(2)+ Tau(2))的收敛结果,其中H和TAU是步骤分别在空间和时间内尺寸。然后,通过采用插值后处理操作员来呈现全局超级度验证。最后,提供了数值结果来证明理论分析的有效性。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号