首页> 外文期刊>Computers & mathematics with applications >A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient
【24h】

A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient

机译:二维变系数时间分数阶扩散方程的高阶近似格式

获取原文
获取原文并翻译 | 示例

摘要

Based on the spatial quasi-Wilson nonconforming finite element method and temporal L2 - 1(sigma) , formula, a fully-discrete approximate scheme is proposed for a two-dimensional time-fractional diffusion equations with variable coefficient on anisotropic meshes. In order to demonstrate the stable analysis and error estimates, several lemmas are provided, which focus on high accuracy about projection and superclose estimate between the interpolation and projection. Unconditionally stable analysis are derived in L-2-norm and broken H-1-norm. Moreover, convergence result of accuracy O(h(2) + tau(2)) and superclose property of accuracy O(h(2) + tau(2)) are deduced by combining interpolation with projection, where h and tau are the step sizes in space and time, respectively. And then, the global superconvergence is presented by employing interpolation post processing operator. Finally, numerical results are provided to demonstrate the validity of the theoretical analysis. (C) 2018 Elsevier Ltd. All rights reserved.
机译:基于空间拟Wilson非协调有限元方法和时间L2-1(sigma)公式,提出了各向异性网格上具有可变系数的二维时间分数阶扩散方程的全离散近似格式。为了证明稳定的分析和误差估计,提供了几个引理,这些引理侧重于投影的高精度以及插值和投影之间的超闭合估计。在L-2-范数和破碎的H-1-范数中得出无条件的稳定分析。此外,通过将插值与投影相结合,得出精度为O(h(2)+ tau(2))的收敛结果和精度为O(h(2)+ tau(2))的超闭合特性,其中h和tau是步长大小分别在空间和时间上。然后,通过采用插值后处理算子来表示全局超收敛。最后,数值结果证明了理论分析的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号