首页> 外文期刊>Computers & mathematics with applications >A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows
【24h】

A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows

机译:弹性流动的高阶拉格朗日不连续的Galerkin流体动力学方法

获取原文
获取原文并翻译 | 示例

摘要

We present a new high-order Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas and solid dynamics. The evolution equations for specific volume, momentum, and total energy are discretized using the modal DG approach. The specific volume, velocity, and specific total energy fields are approximated with up to quadratic Taylor series polynomials. The specific internal energy, pressure, and stress deviators are nodal quantities. The stress deviators are evolved forward in time using a hypoelastic-plastic approach, which requires a velocity gradient. A new method is presented for calculating a high-order polynomial for the velocity gradient in an element. Plasticity is handled by applying a radial return model to the stress deviators. Limiting approaches are presented for modal and nodal fields. The TVD RK time integration method is used to temporally advance all governing evolution equations. Generalized Lagrangian DG equations are derived but test problems are calculated for 1D Cartesian coordinates. A suite of gas and solid dynamics test problem results are calculated to demonstrate the stability and formal accuracy of the new Lagrangian DG method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们提出了一种新的高阶拉格朗日不连续的Galerkin(DG)流体动力学方法,用于气体和实体动力学。使用模态DG方法离散化特定体积,动量和总能量的演化方程。特定的体积,速度和特定总能量近似,直到二次泰勒串联多项式。具体的内部能量,压力和应力偏差器是节点数量。使用低管塑料方法及时在时间上进化应力偏差,这需要速度梯度。提出了一种新方法,用于计算元素中的速度梯度的高阶多项式。通过将径向返回模型应用于应力偏差器来处理可塑性。为模态和节点领域提出了限制方法。 TVD RK时间集成方法用于暂时推进所有管理演化方程。推导出的广义拉格朗日DG方程,但计算了1D笛卡尔坐标的测试问题。计算出套件套件和实体动力学测试问题结果,以展示新拉格朗日DG方法的稳定性和正式准确性。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号