首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics
【24h】

A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics

机译:固体动力学的高阶拉格朗日不连续伽勒金流体动力学方法

获取原文
获取原文并翻译 | 示例
           

摘要

We present a new multidimensional high-order Lagrangian discontinuous Galerkin (DG) hydrodynamic method that supports hypoelastic and hyperelastic strength models for simulating solid dynamics with higher-order elements. We also present new one-dimensional test problems that have an analytic solution corresponding to a hyperelastic-plastic wave. A modal DG approach is used to evolve fields relevant to conservation laws. These fields are approximated high-order Taylor series polynomials. The stress fields are represented using nodal quantities. The constitutive models used to calculate the deviatoric stress are either a hypoelastic-plastic, infinitesimal strain hyperelastic-plastic, or finite strain hyperelastic-plastic model. These constitutive models require new methods for calculating high-order polynomials for the velocity gradient and deformation gradient in an element. The plasticity associated with the strength model is determined using a radial return method with a J(2) yield criterion and perfect plasticity. The temporal evolution of the governing equations is achieved with the total variation diminishing Runge-Kutta (TVD RK) time integration method. A diverse suite of 1D and 2D test problems are calculated. The new 1D piston test problems, which have analytic solutions for each elastic-plastic model, are presented and calculated to demonstrate the stability and formal accuracy of the various models with the new Lagrangian DG method. 2D test problems are calculated to demonstrate the stability and robustness of the new Lagrangian DG method on multidimensional problems with high-order elements, which have faces that can bend. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们提出了一种新的多维高阶拉格朗日不连续伽勒金(DG)流体力学方法,该方法支持用于模拟具有高阶元素的固体动力学的次弹性和超弹性强度模型。我们还提出了新的一维测试问题,这些问题具有对应于超弹塑性波的解析解。模态DG方法用于发展与保护法有关的领域。这些字段是近似的高阶泰勒级数多项式。应力场用节点量表示。用于计算偏向应力的本构模型可以是次弹性模型,无限小应变超弹塑性模型或有限应变超弹塑性模型。这些本构模型需要新的方法来计算元素中速度梯度和变形梯度的高阶多项式。与强度模型关联的可塑性是使用具有J(2)屈服准则和完美可塑性的径向返回方法确定的。控制方程的时间演化是通过总变化量减小的Runge-Kutta(TVD RK)时间积分方法实现的。计算出一整套的一维和二维测试问题。提出并计算了新的一维活塞测试问题,这些问题对每个弹塑性模型都有解析解,以证明使用新的拉格朗日DG方法的各种模型的稳定性和形式精度。计算二维测试问题,以证明新的Lagrangian DG方法对具有高阶元素且其表面可能弯曲的多维问题的稳定性和鲁棒性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号