首页> 外文期刊>Computers & mathematics with applications >A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows
【24h】

A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for elastic-plastic flows

机译:弹塑性流动的高阶拉格朗日间断Galerkin流体动力方法

获取原文
获取原文并翻译 | 示例

摘要

We present a new high-order Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas and solid dynamics. The evolution equations for specific volume, momentum, and total energy are discretized using the modal DG approach. The specific volume, velocity, and specific total energy fields are approximated with up to quadratic Taylor series polynomials. The specific internal energy, pressure, and stress deviators are nodal quantities. The stress deviators are evolved forward in time using a hypoelastic-plastic approach, which requires a velocity gradient. A new method is presented for calculating a high-order polynomial for the velocity gradient in an element. Plasticity is handled by applying a radial return model to the stress deviators. Limiting approaches are presented for modal and nodal fields. The TVD RK time integration method is used to temporally advance all governing evolution equations. Generalized Lagrangian DG equations are derived but test problems are calculated for 1D Cartesian coordinates. A suite of gas and solid dynamics test problem results are calculated to demonstrate the stability and formal accuracy of the new Lagrangian DG method. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们提出了一种用于气体和固体动力学的新的高阶拉格朗日不连续伽勒金(DG)流体力学方法。使用模态DG方法离散化了特定体积,动量和总能量的演化方程。比体积,速度和比总能量场可以用最多二次泰勒级数多项式近似。内部比能量,压力和应力偏差是节点量。应力偏差是使用次弹性塑性方法在时间上向前发展的,这需要速度梯度。提出了一种计算单元速度梯度高阶多项式的新方法。通过将径向返回模型应用于应力偏向器来处理可塑性。提出了模态和节点场的限制方法。 TVD RK时间积分方法用于在时间上推进所有控制的演化方程。推导了广义拉格朗日DG方程,但针对一维笛卡尔坐标计算了测试问题。计算了一组气体和固体动力学测试问题的结果,以证明新的拉格朗日DG方法的稳定性和形式精度。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号