首页> 外文期刊>Computers & mathematics with applications >Linear second order energy stable schemes for phase field crystal growth models with nonlocal constraints
【24h】

Linear second order energy stable schemes for phase field crystal growth models with nonlocal constraints

机译:具有非局部约束的相场晶体生长模型的线性二阶能量稳定方案

获取原文
获取原文并翻译 | 示例

摘要

We present a set of linear, second order, unconditionally energy stable schemes for the Allen-Cahn model with nonlocal constraints for crystal growth that conserves the mass of each phase. Solvability conditions are established for the linear systems resulting from the schemes. Convergence rates are verified numerically. Dynamics obtained using the Allen-Cahn model with nonlocal constraints are compared with the one obtained using the classic Allen-Cahn model as well as the Cahn-Hilliard model, respectively, demonstrating slower dynamics than that of the Allen-Cahn model but faster dynamics than that of the Cahn-Hilliard model. Thus, the Allen-Cahn model with nonlocal constraints can serve as an alternative to the Cahn-Hilliard model in simulating crystal growth while conserving the mass of each phase. Two Benchmark examples are presented to contrast the predictions made with the four models, highlighting the accuracy and effectiveness of the Allen-Cahn model with nonlocal constraints. (C) 2019 Published by Elsevier Ltd.
机译:我们为Allen-Cahn模型提出了一组线性,二阶,无条件的能量稳定方案,该方案具有非局部约束的晶体生长,可保存每个相的质量。建立了由方案产生的线性系统的可解性条件。收敛速度通过数值验证。将使用非局部约束的Allen-Cahn模型获得的动力学与使用经典Allen-Cahn模型以及Cahn-Hilliard模型获得的动力学分别进行比较,证明动力学比Allen-Cahn模型慢,但动力学快于Cahn-Hilliard模型的模型。因此,具有非局部约束的Allen-Cahn模型可以替代Cahn-Hilliard模型,在模拟晶体生长的同时保留每个相的质量。给出了两个Benchmark示例以对比使用这四个模型所做的预测,突出了具有非局部约束的Allen-Cahn模型的准确性和有效性。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号