首页> 外文期刊>Computers & mathematics with applications >Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains
【24h】

Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains

机译:不规则凸域上二维多维时空分数Bloch-Torrey方程的非结构网格Galerkin有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Models based on partial differential equations containing time-space fractional derivatives have attracted considerable interest in the past decade because of their ability to model anomalous transport phenomena. These phenomena are strongly connected to the interactions within complex and non-homogeneous media exhibiting spatial heterogeneity. The class of equations with multi-term time-space derivatives of fractional orders has been found to be very useful in the description of such interactions. This motivates the extension of the classical Bloch-Torrey equation through the application of the operators of fractional calculus to new multi-term time-space fractional Bloch-Torrey equations with Riesz fractional operators.In this paper, we firstly propose an unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional diffusion equation with Riesz fractional operators on irregular convex domains. Secondly, we rigorously establish the stability and convergence of the numerical scheme. Thirdly, we extend the computational model to solve a system of coupled two-dimensional multi-term time-space fractional Bloch-Torrey equations. Finally, some numerical results are given to demonstrate the versatility and application of the models. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在过去的十年中,基于偏微分方程且包含时空分数导数的模型已经引起了人们的极大兴趣,因为它们具有建模异常输运现象的能力。这些现象与显示空间异质性的复杂和非均匀介质中的相互作用密切相关。已经发现具有分数阶的多项式时空导数的方程组在描述这种相互作用时非常有用。通过将分数微积分算子应用到具有Riesz分数算子的新的多时空分数Bloch-Torrey方程中,这激发了经典Bloch-Torrey方程的扩展。本文首先提出了一种非结构化网格Galerkin不规则凸域上具有Riesz分数算子的二维多维时空分数扩散方程的有限元方法。其次,我们严格建立了数值格式的稳定性和收敛性。第三,我们扩展了计算模型,以解决二维二维时空分数阶Bloch-Torrey耦合方程组。最后,给出了一些数值结果以证明该模型的多功能性和应用。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号