首页> 外文期刊>Journal of Scientific Computing >The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time-Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain
【24h】

The Unstructured Mesh Finite Element Method for the Two-Dimensional Multi-term Time-Space Fractional Diffusion-Wave Equation on an Irregular Convex Domain

机译:不规则凸域上二维多维时空分数阶扩散波方程的非结构网格有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain is considered as a much more general case for wider applications in fluid mechanics. A novel unstructured mesh finite element method is proposed for the considered equation. In most existing works, the finite element method is applied on regular domains using uniform meshes. The case of irregular convex domains, which would require subdivision using unstructured meshes, is mostly still open. Furthermore, the orders of the multi-term time-fractional derivatives have been considered to belong to (0,1] or (1,2] separately in existing models. In this paper, we consider two-dimensional multi-term time-space fractional diffusion-wave equations with the time fractional orders belonging to the whole interval (0,2) on an irregular convex domain. We propose to use a mixed difference scheme in time and an unstructured mesh finite element method in space. Detailed implementation and the stability and convergence analyses of the proposed numerical scheme are given. Numerical examples are conducted to evaluate the theoretical analysis.
机译:在本文中,不规则凸域上的二维多维时空分数阶扩散波方程被认为是流体力学中更广泛应用的更一般的情况。针对所考虑的方程,提出了一种新颖的非结构网格有限元方法。在大多数现有的作品中,有限元方法是使用均匀网格在规则域上应用的。需要使用非结构化网格进行细分的不规则凸域的情况仍然是开放的。此外,在现有模型中,多维时间分数阶导数的阶被认为分别属于(0,1]或(1,2]。在本文中,我们考虑了二维多维时间空间时间分数阶属于不规则凸域上整个区间(0,2)的分数阶扩散波方程,我们建议在时间上使用混合差分格式,在空间中使用非结构化网格有限元方法。给出了所提出数值方案的稳定性和收敛性分析,并通过数值算例对理论分析进行了评价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号