首页> 外文期刊>Computers & mathematics with applications >Finite difference/finite element method for two-dimensional time-space fractional Bloch-Torrey equations with variable coefficients on irregular convex domains
【24h】

Finite difference/finite element method for two-dimensional time-space fractional Bloch-Torrey equations with variable coefficients on irregular convex domains

机译:具有不规则凸域的可变系数的二维时空分数Bloch-Torrey方程有限差分/有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In magnetic resonance imaging of the human brain, the diffusion process of tissue water is considered in the complex tissue environment of cells, membranes and connective tissue. Models based on fractional order Bloch-Torrey equations are known to provide insights into tissue structures and the microenvironment.In this paper, we consider new two-dimensional multi-term time and space fractional Bloch-Torrey equations with variable coefficients on irregular convex domains, which involve the Caputo time fractional derivative and the Riemann-Liouville space fractional derivative. An unstructured-mesh Galerkin finite element method is used to discretize the spatial fractional derivative, while for each time fractional derivative we use the L1 scheme on a temporal graded mesh. The stability and convergence of the fully discrete scheme are proved. Numerical examples are given to verify the efficiency of our method. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在人脑的磁共振成像中,在细胞,膜和结缔组织的复杂组织环境中考虑组织水的扩散过程。已知基于小数阶的模型是在组织结构和微环境中提供见解。在本文中,我们考虑了在不规则凸域上的具有可变系数的新的二维多术时间和空间分数Bloch-Torrey方程,这涉及Caputo时间分数衍生物和Riemann-Liouville空间分数衍生物。非结构化网格Galerkin有限元方法用于离散空间分数衍生物,而对于每次分数衍生物,我们在时间分级网上使用L1方案。证明了完全离散方案的稳定性和收敛性。给出了数值例子来验证我们方法的效率。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号