首页> 外文期刊>Computers & mathematics with applications >A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations
【24h】

A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations

机译:二维对流占优方程和二维近奇异椭圆方程的非均匀Haar小波方法

获取原文
获取原文并翻译 | 示例

摘要

A non-uniform Haar wavelet based collocation method has been developed in this paper for two-dimensional convection dominated equations and two-dimensional near singular elliptic partial differential equations, in which traditional Haar wavelet method produces oscillatory solutions or low accurate solutions. The main idea behind the proposed method is to transform the computation of numerical solution of considered partial differential equations to computation of solution of a linear system of equations. This process is done by discretizing space variables with non-uniform Haar wavelets. To confirm efficiency of the proposed method seven benchmark problems are solved and the obtained results are compared with exact solutions and with local meshless methods, finite element method, finite difference method and polynomial collocation method. Numerical experiments show that the proposed method gives convincing results even in less number of collocation nodes. (C) 2018 Elsevier Ltd. All rights reserved.
机译:针对二维对流占优方程和二维近似奇异椭圆偏微分方程,提出了一种基于非均匀Haar小波的配置方法,其中传统的Haar小波方法产生振荡解或低精度解。该方法背后的主要思想是将考虑的偏微分方程的数值解的计算转换为线性方程组的解的计算。通过使用非均匀Haar小波离散化空间变量来完成此过程。为了确认所提方法的有效性,解决了七个基准问题,并将所得结果与精确解以及局部无网格法,有限元法,有限差分法和多项式搭配法进行了比较。数值实验表明,所提出的方法即使在配置节点数量较少的情况下也能给出令人信服的结果。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号