首页> 外文期刊>Computers & mathematics with applications >Multiscale computational method for heat conduction problems of composite structures with diverse periodic configurations in different subdomains
【24h】

Multiscale computational method for heat conduction problems of composite structures with diverse periodic configurations in different subdomains

机译:不同子域周期结构不同的复合结构导热问题的多尺度计算方法

获取原文
获取原文并翻译 | 示例

摘要

This study develops a novel multiscale computational method for heat conduction problems of composite structures with diverse periodic configurations in different subdomains. Firstly, the second-order two-scale (SOTS) solutions for these multiscale problems are successfully obtained based on multiscale asymptotic analysis. Then, the error analysis of SOTS solutions in the pointwise sense is given to illustrate the importance of developing the SOTS solutions. Furthermore, the error estimate for the SOTS approximate solutions in the integral sense is presented. In addition, a SOTS numerical algorithm is proposed to effectively solve these problems based on finite element method (FEM). Finally, some numerical examples verify the feasibility and effectiveness of the SOTS numerical algorithm we proposed. In this paper, a unified two-scale computational framework is established for heat conduction problems of composite structures with diverse periodic configurations in different subdomains. (C) 2018 Elsevier Ltd. All rights reserved.
机译:这项研究开发了一种新颖的多尺度计算方法,以解决复合结构在不同子域中具有周期性分布的导热问题。首先,基于多尺度渐近分析,成功地获得了针对这些多尺度问题的二阶二尺度(SOTS)解。然后,从角度上对SOTS解决方案进行了误差分析,以说明开发SOTS解决方案的重要性。此外,在积分意义上给出了SOTS近似解的误差估计。另外,提出了一种基于有限元方法的SOTS数值算法来有效地解决这些问题。最后,通过数值算例验证了本文提出的SOTS数值算法的可行性和有效性。本文针对不同子域具有不同周期配置的复合结构的热传导问题,建立了统一的两尺度计算框架。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号